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ABSTRACT: The results of beam-beam simulations that model DCI operating as an e+e­

collider are reported. The simulation techniques, including a new procedure for incorporating 

synchrotron radiation, are described. Phase advance errors between the interaction points explain 

the beam-beam limit at the operating point qx = qy = 0.725 (q denotes the fractional part of the 

tune). The effects of radiation damping are also studied near that operating point. Simulation 

and experiments disagree in a second operating region, qx = qy - 0.795, indicating additional 

physics outside the scope of our model. 

I. INTRODUCTION 

We have conjectured that the beam-beam performance of e+e- storage ring colliders could 

be enhanced by operating with a round rather than the more conventional flat collision spot[I]. 

This conjecture was motivated in part by the work of Peggs and Talman on beam-beam driven 

resonances[2] and is supported by computer simulations in Ref. 1. The DCI storage ring[3] that 

operated at Laboratoire de l' Accelerateur Lineaire (Orsay, France) about 10 years ago was close 

to a round beam collider. DCI did not achieve the beam-beam performance that we would have 

hoped. This could be attributed to a number of factors ranging from particular features of DCI to 

our conjecture being wrong. The latter makes understanding the performance of DCI part of our 

continuing work. 
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In this paper we use simulations to study the effects of synchrotron radiation damping and 

phase advance errors between interaction regions. We obtain agreement with DCI measurements 

at one operating point (qx = qy = 0.725) but not in a second operating region (qx = qy - 0.795). 

We assume implicitly that the beam-beam limit is a single-particle, incoherent phenomenon in 

this and earlier work, but this may not be the case[4]. We present some preliminary evidence 

that the disagreement at qx = qy - 0.795 could be due to coherent beam-beam effects. 

The luminosity of a collider is 

£ = 
N

2
f 

1 c --411" CT CT 
x y 

(1) 

where N is the number of particles per bunch (assumed equal for the two beams), fc is the 

collision frequency, and CTx and CTy are the rms horizontal and vertical sizes at the collision point 

The beam is flat in most e+e- storage rings, RCT II CT.jCTx «1[5]. The strength of the beam-beam 

interaction is measured by the beam-beam strength parameters 

* r N fJ. e . = e ___ --:--'J::....-
J 211" yCT. (CT +CT ) 

J x Y 
j = x,Y _ (2) 

In this equation fJ; and fJ; are the betatron amplitude functions at the interaction region (IR), y is 

the energy in units of mc2, and re is the classical electron radius. If there is no dispersion at the 

IR and fJ; = RCTfJ;, then ex = e y = e and the luminosity can be written 

£ = rye (l+R) (3) 
* CT 2er fJ e v 

where e is the electron charge and I is the total current 

The (1 + RCT) in eq. (3) is one factor that favors round beams, but our conjecture is that 

there is an additional factor related to e[l]. Specifically, the maximum beam-beam strength 

reached in simulations is e > 0.10 when: i) RCT = I, ii) fJ; = fJ;, iii) the horizontal and vertical 

tunes, Qx and Qy' are equal, iv) the tunes have fractional parts just above 1/4, 1/2, or 3/4, v) the 

vertical emittance is made by random processes rather than coupling, vi) the fractional energy 
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loss between collisions is about 10-4 (typical for a heavy quark factory), and vii) synchrotron 

motion is neglected[I]. As discussed in Section II points i), ii), iii) and vii) hold to a substantive 

degree for DCI, but iv), v) and vi) do not. In addition, DCI had two IR's; this introduces the 

possibility of optical errors that were not included in Ref. I because a one IR configuration 

typical of a heavy quark factory was studied there. . 

II. DCI AND SIMULA nON MODELS 

DCI was an ambitious project aimed principally at testing ideas of beam-beam 

compensation by colliding four beams[6,7]. This design goal led to its having many of the 

features of a round beam collider including operating points near the coupling resonance, qy = qx 

(q denotes the fractional part of the tune), equal horizontal and vertical p·'s, and, with full 

coupling, Ru - 0.94[5]. These are the reason for our interest in the two beam, e+e-, 

performance. This paper considers the two beam performance exclusively[6,7]. 

Some features of DCI were not those of an ideal round beam collider. First, there are 

contributions to the beam sizes from dispersion. When the beam is fully coupled, the ratios of 

energy to betatron sizes are 0.40 in the vertical and 0.12 in the horizontal. Second, the emittance 

comes from coupling rather than random processes. This is discussed in Section IV.2; it was 

found to be unimportant. In addition, there are variables that could be important when 

extrapolating DCI performance to projected machines. These include the fractional energy loss 

between collisions (the damping decrement) and the number of interaction regions. They are 

investigated in detail in Section IV. 

DCI parameters are given in Table I. The table also has the parameters of two models of 

DCI, ONE and TWO, that are used in the simulations reported in this paper. The differences 

between ONE and TWO in the order of importance are: i) the number of interaction regions 

(given by the names), ii) the energies, and iii) the circumferences. Optical errors were studied 

with TWO, and work on radiation damping was done with ONE. The ratio of nominal 

emittances is £TWd£ONE = 0.64, and to reach the same fs, the currents should be in the ratio 

ITWdloNE = 0.256. 
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There are two much more important differences between DCI and either model. The f11"st 

is that synchrotron oscillations are neglected in the models. Synchrotron motion could influence 

the beam-beam performance through dispersion at the IR or tune modulation[8]. DCI had 

horizontal and vertical dispersion at the lR's, but, as discussed earlier in this section, the spot size 

was dominated by betatron motion. The ratio of bunch length to p. at I GeV was 0.045, so tune 

modulation effects are negligible[9]. These arguments, plus the fact that the DeI group does not 

recall the synchrotron tune influencing the beam-beam performance[IO] , have led us to neglect 

synchrotron motion in the models. 

The other major difference is that the models used a smooth approximation, described 

below, for the lattice focusing and coupling. With this approximation it is possible to simulate 

the effects of coupling on eminance, but we are taking a specific model for the coupling. This 

isn't an unreasonable approximation because the cause of residual coupling usually isn't known, 

but it is an approximation with some uncertain consequences. One consequence that should not 

be important is that the integer parts of Qx and Qy must be equal in the models. 

ill. SIMULA nON TECHNIQUE 

One thousand test particles were tracked in models that had the beam-beam interaction and 

linear arcs as the main elements. Non-linear kicks were applied in the beam-beam interaction. 

Particle transport between collisions and synchrotron radiation took place in the arcs. The 

simulation was strong-strong; i.e. there were two beams and the beam sizes and centroid 

positions evolved turn-by-turn. A tum began with the particles half-way through the beam­

beam interaction because this symmetry point is a natural location for calculating beam 

properties. (The beam-beam kicks from the f11"st half of the interaction were stored and applied 

again after beam properties were calculated.) 

m.l Beam-Beam Interaction 

The test particle coordinates are xbm and Ybm where x and yare the horizontal and 

vertical, respectively. The first index b = I, 2 denotes the beam, and the second index m = 
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l •...• M (M = 10(0) denotes the test panicle number. The mean positions and rms sizes were 

calculated from the test particle coordinates just before the beam-beam kick was applied. For 

example 

<x >= 
1 

1 M 
M L>lm mel 

(4) 

These were used in calculating the beam-beam kicks. ''Feedback'' that set <Xl> = O. <x2> = O. 

<y 1 > = O. and <Y2> = 0 was used in some cases to adjust the mean positions before collisions. 

The beams were treated as Gaussian in x and y. and the kicks were calculated for one-half 

of the interaction and applied twice. Assuming for the moment that a x I > a y l' the kicks for a 

particle in beam 2 were given by[ll] 

, 
ax = 2m 

, 
6y = 

2m 

where 

-N r .fi 
e 

-N r .fi 
_:-:--:::e~ Re y a

dl 

[
X+iY] f

2
(x,y)=w ---a

dl 

(Sa) 

[ { 
x2 /}] [XRal+iY/Ral] 

- exp - --- + --- W 2 2 a 
2a

Xl 
2a

yl 
dl 

(Sb) 

In eqs. (5) N is the number of particles the beam. oal = 2(ail - ~l)' Ral = ayi/axl' and W is 

the complex error function. 

Nominally the beams were round so ayl > axl was as likely as axl > ayl' If the former 

was the case. eqs. (5) were used with x and y interchanged everywhere. The program[l2] that 

calculated W(zR + izI) used an asymptotic expansion[13] when IZRI and IZII were large (as they 

are when axl - ayl); this expansion is a good approximation and does not have numerical 

problems. In the case where axl = ayl an asymptotic expansion of the complementary error 

function. erfc(z). was used[l4]; it gave 
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f 2 (x,y) = X:iy[1-eXp(-(x2+y2)/2U~1) 1 - (6) 

The text above describes the calculation of the beam-beam interaction for particles in beam 2. 

The same method was used for particles in beam I. 

These expressions assume that the beam distribution can be approximated as Gaussian for 

the purpose of calculating the electromagnetic fields produced. We have shown in a recent paper 

that this assumption prevents the appearance of some coherent beam-beam resonances[4]. 

Therefore, the restriction amounts to an implicit assumption that the dominant beam-beam effect 

is due to single particle, incoherent phenomena. 

III.2 Radiation 

The arcs were treated as a linear transport with radiation damping and fluctuations. The 

simulation technique was motivated by work of Schonfeld[15] and is described in detail in earlier 

notes[16]. The phase space coordinates of a particle immediately after the beam-beam 

interaction and before entering the arc are represented as a vector Xo = (XO' xQ, Yo' yo> T !! (XQi) T. 

If an ensemble of particles were started at Xij, the average phase space vector at the end of the arc 

would be <X> = «x>, <x'>, <y>, <y,»T !! (<Xi»T, and there would be deviations from <X> 

due to fluctuations. These deviations are given by a matrix S where 

s .. = <x. x . > - <x. ><x . > i, j = 1, __ . , 4 _ 
~J ~ J ~ J 

(7) 

The properties and parameters of the arc determine <x> and S, and given these x, the final phase 

space vector, can be calculated. It is centered at <x> with a 4-dimensional Gaussian probability 

distribution given by S. Four random numbers select the final phase space vector for the particle 

out of this distribution. 

The phase space vector x(s) propagates as 

x(s) = R(s,s')x(s') 

in the absence of fluctuations. Elements of the matrix R satisfy 

d
2 

2 R
lj 

ds 

d 2 2 
+ Y (S)--d Rl . + W (S)Rl . + W (S)R

3
.= 0 , 

x s J x J C J 

6 

(8) 

( 9a) 



° , (9b) 

d d 
R2j = dsR1j' and R4j = dsR3j 

(ge) 

with the initial condition R(s = s·. s') = I. The index j = 1 •...• 4. Y x and y y are the damping 

rates. Wx and Wy are the uncoupled betatron frequencies. and Wc is the coupling frequency. 

The matrix R is important for determining both <X> and S. If the length of the arc between 

interaction points is L. then 

<x> = R(L,O)XO 

The phase space vector at s due to photons emitted at s' is 

x(s) =R(s,s')F(s') 

(lO) 

(11) 

where F(s') is related to the dispersion (Ill = IIx' ...• 114 = dlly'ds) and photon spectrum (n(u. s'» 

at s' 

00 

F . (s') = - 11. (s') I ~ n (u, s') du • 

J J ° ° 
Modelling the radiation as white noise gives 

L 
S ~ I R(L,S')F(S')FT(S')RT(L,S') ds' • 

° 

(12) 

(13 ) 

A detailed lattice description including skew quadrupoles is needed to solve eqs. (9) for R. 

A smooth approximation that follows from the work of Chandrasekhar[l7] was used for the DCI 

simulations reponed in this paper. The frequencies and damping were taken as independent of s. 

and the damping was set equal in the two dimensions. Equations (9a) and (9b) become 

d
2 

2 d 2 2 
---R + - --R + Wx R1j + WeR3j= ° , 
ds2 1j T ds 1j 

(14a) 

and 

° . (l4b) 
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The matrix R given by eqs. (14) and (9c) depends on the betatron frequencies, coupling 

frequency, and damping time. The matrix S depends on the dispersion and radiation spectrum in 

addition. These are taken as independent of s' in this smooth approximation, and, having made 

this approximation, the numerical values of F are determined by the nominal beam eminances 

through eq. (13) in the limit L -+ .... 

The input parameters are the emittances away from the coupling resonance and the 

coupling resonance width. The results of a simulation of synchrotron radiation without the 

beam-beam interaction are shown in Figure 1. When IQx - Qyl > t.Q, the coupling resonance 

width, the beam sizes are those expected from the emittance ratio. When IQx - Qyl $ t.Q 

coupling decreases the horizontal size and increases the vertical size making them equal for Qx = 

Qy. 

The principal advantage of this technique of simulating radiation is that x-y coupling is not 

included in an ad hoc manner. Instead it is part of the model of the arc, and it affects the motion 

and radiation of individual particles differently. This could be important in DCI where the 

emittances away from the coupling resonance are substantially different and the beam-beam tune 

spread is much larger than the coupling resonance width. However, as mentioned at the end of 

the next section, it was not. 

IV. PERFORMANCE AT q = 0.725 

There are two beam DCI data near the coupling resonance for 0.70 <. q < 0.82[6,7,18] 

where q is defined as q II [qx + qy]/2. Figure 2 shows that the measured beam-beam strength 

parameter at q = 0.725 saturates at e = 0.018. The strength parameter was determined from 

luminosity and beam current measurements using eq. (3). The systematic error is estimated to be 

±lO%[lO]. These data can be interpreted in terms of beam-beam resonances. 

IV.l Phase Advance Errors 

The resonances for a round beam are 2pq = n where p and n are integers. The resonance 

strengths depend on the resonance order, 2p, and the lattice symmetry through the parity of n. 
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The reduced Hamiltonian when there is a betatron phase error between IR's is derived in 

Appendix A. It is 

(15) 

where t = NrJy, the functions T k of the action, I, are given by eq. (A6), and 21rt.Q is the phase 

advance error between IR's. The resonance term, ( )xT2p(l), decreases as the resonance order 

increases, and n detennines the dependence on t.Q. If n is even, the resonance term is large and 

approximately independent of t.Q, but if n is odd, the leading order terms multiplying T 2p cancel 

and the resonance term is proportional to t.Q. The operating point q = 0.725 is just below the 4<i 
= 3 and 8q = 6 resonances. Without phase advance errors, the eighth order resonance would be 

the dominant one, but with phase advance errors the fourth order resonance could be important 

The DCI quadrupoles were not measured, but, from experience with SUPER-ACO, it is 

estimated that the rms gradient error was 0.1 %[10]. A Monte Carlo calculation was performed to 

estimate the effect of such gradient errors. The DCI lattice was used, and the tunes for each trial 

were adjusted to the nominal values (Qy = 1.725, Qx =3.725) by overall changes to the 

horizontal and vertical quadrupoles. The phase advance errors between IR's was then calculated. 

The results were O'(t.Qx) = 7.2xlO-4, O'(t.Qy) = 1.9xl0-3, and the correlation coefficient was 

-0.74. The beam-beam simulation discussed below used t.Qx = -0.001 and t.Qy = 0.004. This 

would be roughly a two standard deviation effect if the rms gradient error was 0.1 %. 

Figure 3 shows the results of simulations of TWO with and without phase advance errors. 

These results were obtained by starting at the lowest value of the current, I = 3 rnA, and tracking 

for about 1.05 betatron damping times (1.5x 105 turns). The test particle locations were saved 

and used to begin a run at the next current. This was continued until the highest current of 

21 rnA was reached. The runs with phase advance errors and I = 19 rnA, 21 rnA were tracked for 

2.2 betatron damping times. The luminosity, e, and emittances reached stable values that varied 

by ±2% or less every 12,500 turns at all currents. The horizontal and vertical sizes of each beam 

were equal, O'xl = O'YI and 0'x2 = O'y2' There were no indications of flip-flop phenomena; the 

relative sizes satisfied 0.95 os O'xt/O'x2 os 1.05 at all currents. There was no transverse feedback 
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and the rms center-of-mass motion was about 20% of the beam size. The two beams moved in 

phase, and the test discussed below for ONE indicated that the feedback described in Section 

m.l would not change the results. 

The simulation results with 6Q = 0 are well above the data, but with phase advance errors 

the dependence of e on current and the saturation value e = 0.020 are consistent with the data 

within the 10% systematic error. We conclude that the DCI performance at q = 0.725 can be 

explained with reasonable phase advance errors. Piwinski has pointed out the importance of 

optical errors in PETRA [ 19], and this result for DCI reinforces his conclusion. Phase advance 

errors are not likely to be as imponant in single interaction region colliders where tunes can be 

measured well and adjusted to remove errors. 

IV.2 Radiation Damping 

Prior to studying the effects of phase advance errors and reaching the conclusion above, we 

performed some simulations of ONE with q = 0.8625 (giving the same phase advance between 

lR's as Qx = 3.725, Qy = 1.725 did in DCI) and different amounts of radiation damping. Phase 

advance errors are not possible because the model has only one IR, and the results address some 

of the effects of radiation damping on beam-beam performance. Figure 4 shows the dependence 

of the beam-beam strength parameter on current for different damping decrements, 6, defmed as 

the ratio of the energy loss between collisions to the beam energy. The radiation fluctuations 

were changed to give the same emittances for different damping decrements. The beam-beam 

performance at this operating point is only weakly dependent on 6. Tune scans at a fixed current 

near the q = 7/8 resonance are shown in Figure 5. Far from the resonance the dependence on {j is 

weak. Near the resonance the behavior is more complex, however. There is a substantial change 

between {j = 2xlO-5 and {j = 5xlO-5 but only small changes for {j < 2xlO-5. 

These results are not consistent with diffusion models[20] that predict radiation effects that 

are insensitive to the tune. Keil and Talman[21], Seeman[22], and Rice[23] have looked at the 

effects of radiation damping in operating storage rings. A direct comparison with their work is 

not possible for two reasons. First, they use experimentally determined beam-beam limits that 
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can depend on the beam halo as well as the core. Our work studies only the core because it is 

restricted to a small number of test particles and a small number of damping times. Second, the 

data are at a variety of operating points, but our simulation results show that the operating point 

is a crucial parameter. We conclude that beam-beam performance is only weakly dependent on 

radiation damping away from low order resonances. 

Two checks were performed at 1= 58 rnA (equivalent to 1= 14.8 rnA in TWO) and {, = 

5><10-6. In the standard conditions there was no feedback and the synchrotron radiation was 

generated with the coupled model discussed in Section 111.2; e = 0.0220 for those conditions. 

With feedback we found e = 0.0221, and with the horizontal and vertical emittances generated 

independently e = 0.0228. We conclude that the results are not sensitive to feedback or the 

modelling of synchrotron radiation. 

v. PERFORMANCE AT Ii = 0.790 - 0.800 

The maximum e was measured as a function of tune in the region Ii = 0.790 - 0.800; the 

results are presented in Figure 6[7]. The eyeball fit to the data goes to e = 0 at Ii = 9/11. This is 

an interesting region to study with simulations. The lowest order resonance that satisfies the 

resonance condition 2pq = n is Ii = 8/10, and the reduced Hamiltonian (eq. (15» suggests that the 

resonance strength is independent of 6Q. It was anticipated that these data would be difficult to 

interpret with the resonance model in Appendix A because: 

I) the tenth order resonance should not have any effect above Ii = 0.800 and yet there is one 

measurement at Ii = 0.803 that is consistent with the trend of the data. The tune and luminosity 

measurements at this point are correct[ 10]. 

2) Ii = 9/11 does not arise naturally because it is an odd order resonance. Odd order 

resonances can appear if the beams do not collide head-on, but if that were the case one would 

expect the Ii = 4/5 resonance to be stronger than Ii = 9/11. 

Simulations of TWO were performed at q = 0.7900, 0.7933, 0.7950, 0.7967, and 0.8000; 

the results are in Figure 7. These runs were performed with 6Qx = -0.001, 6Qy = 0.004, and 

feedback. The latter was an arbitrary choice at the time because feedback did not affect 
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performance at q = 0.725. The runs at low currents were 2. 1 damping times long, and the 

behavior was similar to that at q = 0.725 and low currents. The luminosity, ~, and the ernittances 

were stable, and the beam sizes were approximately equal. The striking difference was at high 

currents and all tunes except q = 0.800; the beam sizes became unequal (a flip-flop state) and that 

lowered £ and e abruptly rather than saturating gently as at q = 0.725. As one example, at q = 

0.795 and I = 30 rnA the results were £ = 1.1 Ox 1029cm-2s-1, ~ = 0.0184, and uxl/ux2 = 1.04, 

but at 35 rnA £ = 0.62x1029cm-2s-1, e = 0.0089, and uxl/ux2 = 2.08 after 4.2 damping times. 

These values were not stable even after that length of time. The flip-flop state did not occur at q 
= 0.800. The results for the maximum e's based on Figure 7 are inconsistent with the data in 

Figure 6. We conclude that there must be additional important physics in this operating region. 

Studies were performed to identify important factors. The effects of optical errors were 

checked by setting 6Qx = 6Qy = 0 at q = 0.7933 and q = 0.7967; the feedback was left on. The 

results were unchanged. The low current behavior was the same and flip-flops occurred at the 

same values of current The feedback was tumed-off and current scans performed at q = 0.7950, 

0.7967, and 0.8000 with 6Qx = -0.001 and 6Qy = 0.004. The results were strikingly different 

because the flip-flop states did not occur. This leads us to believe that coherent effects are 

important in this tune region. A more complete exploration would require using a field 

calculation algorithm that does not assume a Gaussian charge distribution. We have developed 

such an algorithm[41, but applying it to DCI with its long damping time would be prohibitive 

because of required computer resources. 

VI. SUMMARY AND CONCLUSIONS 

DCI performance with two beams at q = 0.725 can be understood with a reasonable phase 

advance error between the interaction regions. The importance of such errors was flTSt discussed 

by Piwinski for PETRA[191. Studies show that the effects ofradiation damping near this tune 

depend on the proximity ofresonances. The behavior at q :: 0.795 is more difficult to 

understand. It is outside the single particle Hamiltonian model presented in Appendix A and 

used to explain the results at q = 0.725. There is additional important physics and some 
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indication that coherent effects are responsible. These are expected to be important at low values 

of damping as in DCI[4], and it is widely believed that coherent effects were the cause of the 

failure of the space charge compensation experiments in DCI[24]. 

What do these results imply about heavy quark factories? There optical errors will not be 

present because there will be only one interaction region and the radiation damping will be 

considerably stronger than at DCI making coherent effects less important. We still consider 

round beams to offer an exciting possibility for high luminosity and look forward to their use in 

the Novosibirsk ~factory. 

We enjoyed and appreciate the discussions about DCI with J. Le Duff, M. P. Level, P. C. 

Marin, E. M. Sommer, and H. Zyngier. This work was supported by the Department of Energy, 

contracts DE-AC03-76SFOOO98 and DE-AC03-76SFOOSlS. Early work on this topic was 

performed at the Laboratory of Nuclear Studies, Cornell University, which is supported by the 

National Science Foundation. 

APPENDIX A: ANALYSIS OF BETATRON PHASE ERRORS 

This appendix follows closely the Hamiltonian analysis of bunch length effects in the 

beam-beam interaction[9]. Consider the motion of a panicle that collides with a beam of N 

particles at two diametrically opposite interaction regions (IR's). The total Hamiltonian is 

CD 1 

£ ~ I dq [l-eXp [-¥ (~)2)] 
n=-CD 0 q p 

H (x,p ,t) = HO (x,p ) + x x 

x [6 (t-nTo) + 6 (t-nT
O
-T

O
/2) ] (Al) 

where x is the transverse coordinate and Px is the conjugate momentum. The unperturbed 

betatron motion is described by Ho, and the perturbation parameter is £ = Nrely. The beam-

beam potential is that produced by a round beam with rms transverse width CT p. The sum is over 

all turns, and the two 6-functions describe the two interaction points. Synchrotron motion and 
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bunch length effects are ignored in equation (A 1), so this analysis holds for bunch lengths much 

shorter than p*, the interaction region p-function. 

Transform the Hamiltonian to the action-angle coordinates of Ro, I and ,., given by[25] 

x = i2IP(t) cos(,.+X(t», (A2) 

and 

t 

X(t)= CJdt/P(t)-WoQpt 
o 

(A3) 

where Qp is the betatron tune for one complete revolution and Wo = 211"/I'O. The angle X(t) is the 

deviation from a smooth betatron phase advance. If there is a betatron phase error between 

interaction regions, i.e. if the phase advance from the first to the second IR is 211"(Qpf2 + ~Q) and 

the phase advance from the second to the flTst IR is 211"(Qpf2 - ~Q), 

(A4) 

Fourier analyzing the Hamiltonian in time and t' and making a change of variables gives[9] 

H = HO + 

... 
two ~ T2 (I) [1+eXp(i1l"(n+4p~Q» ]eXP (i(nwot-2P'» 

n,p=-'" P 

where 

1 
T (I) =--

k (211") 2 J
211" Jld [ 2 ] ·k9 ~9 0 ~ l-exp[-~ cos 9] e-~ . 

(AS) 

(A6) 

The function T k equals zero when k is odd, so there are only even k terms in eq. (A5). Near a 

single isolated resonance, 2pQp = n, the reduced Hamiltonian is 

Hred= HO + tWo[To(I)+T2P(I){1+eXp(i1l"(n+4p~Q»}] 
(A7) 
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A slowly varying phase factor that multiplies T 2p has been neglected in eq. (A7). The partial 

derivative clT<1'clI gives the tune shift with action, and ( )xT2p(1) is the resonance tenn. 

The dependence on 6Q is determined by n. If n is ~, the resonance term is large and 

approximately independent of 6Q 

Hred= HO + eWo [To (I)+2T
2P

(I) j, (AB) 

and the phase advance error does not affect resonance strength. However, when n is odd the 

leading order terms multiplying T 2p cancel and the resonance term is proportional to 6Q. The 

reduced Hamiltonian is 

Hred= HO + eWo[To(I)-4inp6QT2P(I) j, (A9) 

and the resonance widths in action and frequency[26] are proportional to (6Q) 1/2. 
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TABLE I: PARAMETERS 

DCI[7] ONE TWO 

Revolution frequency (MHz) 3.169 6.338 3.169 
Bending radii (m) horizontal 3.8197 

vertical -4.0627.4.0852 
Superperiods 2 I 2 
Bunches,lbeam 1 I 1 
Interaction regions 2 1 2 
RF frequency (MHz) 25.352 
Hannonic number Ii 
Momentum compaction 0.0788 -
Tunes horizontal 3.725- 1.8625- 3.725-

vertical 1.725- 1.8625- 3.725-
p- (m) horizontal 2.18 2.18 2.18 

vertical 2.18 2.18 2.18 -/I (m) horizontal -0.21 0.00 0.00 
vertical 0.69 0.00 0.00 

Coupling Resonance width 0.001 - 0.003[10] 0.001 0.002 

Energy (MeV) 1000. 800. 1000. 800. 
Energy loss per tum (Ice V) 28. 11.5 20.- 11.5 
Damping decrement (x 1 O~ 14. 7.1 10.- 7.1 
Damping times (msec) horiz. 31. 61. 32.- 45. 

vert 22. 43. 32.- 45. 
long. 10. 20. 

RMS energy width (x 10-4) 4.1 3.3 
RF voltage (lcV) 250.[27] 
Bunch length (m) 0.097 
Beam sizes (mm) 
No coupling horiz. 0.984 0.787 0.976 0.781 

vert 0.360 0.291 0.225 0.180 
With coupling horiz. 0.714 0.573 0.708 0.567 

vert 0.763 0.613 0.708 0.567 
Natural emiuances (11m) horiz. 0.441 0.282 0.437 0.280 

vert 0.0235 0.0150 0.0233 0.0149 

- => Variable - the given values are nominal ones. 
=> Values unknown or not used in simulations. 
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FIGURE CAPTIONS 

Figure 1: Simulation of synchrotron radiation in a storage ring approximating DeI with no beam­

beam interaction. Storage ring parameters are: Px = Py = 2.18 m, Ex = 0.23 pm. Ey = 0.023 pm, 

CTx = 7.08xlO-4 m, CTy = 2.24xlO-4 m, (Qx + Qy)f2 = 1.860, and 6Q (coupling resonance width) 

= 0.001. 

Figure 2: The measured dependence of the beam-beam strength parameter on current. The 

currents of the two beams were equal, I+ = I_ = I, and the line is an eyeball fit to the data. 

Figure 3: Simulation results for TWO with and without phase advance errors. The values of 6Qx 

and 6Qy are discussed in the text. The curve is the line through the data in Figure 2. 

Figure 4: Simulation results for ONE with different damping decrements. This operating point 

corresponds to q = 0.725 in TWO. The curve is the line through the data in Figure 2 scaled by 

1/0.256 (Section n). 

Figure 5: Tune scans for ONE with different damping decrements. 
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Figure 6: Data from Del - the maximum beam-beam strength parameter as a function of tune[7] . 

Figure 7: Simulation results for the dependence of ~ on CWTent at different tunes when feedback 

was applied. 
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